1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
| // PBR光照计算函数�?CCProgram pbr-lighting %{ struct MaterialData { vec3 albedo; float metallic; float roughness; vec3 normal; vec3 emission; float ao; }; struct LightData { vec3 direction; vec3 color; float intensity; }; // 菲涅尔反�?(Fresnel) vec3 fresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0); } vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness) { return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0); } // 法线分布函数 (Normal Distribution Function - GGX/Trowbridge-Reitz) float distributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness * roughness; float a2 = a * a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH * NdotH; float num = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return num / denom; } // 几何遮蔽函数 (Geometry Function) float geometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r * r) / 8.0; float num = NdotV; float denom = NdotV * (1.0 - k) + k; return num / denom; } float geometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = geometrySchlickGGX(NdotV, roughness); float ggx1 = geometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } // PBR BRDF计算 vec3 calculatePBR(MaterialData material, LightData light, vec3 viewDir) { vec3 lightDir = normalize(-light.direction); vec3 halfwayDir = normalize(lightDir + viewDir); // 基础反射�? vec3 F0 = mix(vec3(0.04), material.albedo, material.metallic); // Cook-Torrance BRDF float NDF = distributionGGX(material.normal, halfwayDir, material.roughness); float G = geometrySmith(material.normal, viewDir, lightDir, material.roughness); vec3 F = fresnelSchlick(max(dot(halfwayDir, viewDir), 0.0), F0); vec3 kS = F; vec3 kD = vec3(1.0) - kS; kD *= 1.0 - material.metallic; vec3 numerator = NDF * G * F; float denominator = 4.0 * max(dot(material.normal, viewDir), 0.0) * max(dot(material.normal, lightDir), 0.0) + 0.001; vec3 specular = numerator / denominator; float NdotL = max(dot(material.normal, lightDir), 0.0); vec3 diffuse = kD * material.albedo / PI; return (diffuse + specular) * light.color * light.intensity * NdotL; } // 环境光照计算 vec3 calculateAmbientLighting(MaterialData material, vec3 viewDir, samplerCube irradianceMap, samplerCube prefilterMap, sampler2D brdfLUT) { vec3 F0 = mix(vec3(0.04), material.albedo, material.metallic); vec3 F = fresnelSchlickRoughness(max(dot(material.normal, viewDir), 0.0), F0, material.roughness); vec3 kS = F; vec3 kD = 1.0 - kS; kD *= 1.0 - material.metallic; // 漫反射环境光 vec3 irradiance = textureCube(irradianceMap, material.normal).rgb; vec3 diffuse = irradiance * material.albedo; // 镜面反射环境�? vec3 reflectionDir = reflect(-viewDir, material.normal); float maxReflectionLOD = 4.0; // 预滤波贴图的最大LOD vec3 prefilteredColor = textureLod(prefilterMap, reflectionDir, material.roughness * maxReflectionLOD).rgb; vec2 brdf = texture(brdfLUT, vec2(max(dot(material.normal, viewDir), 0.0), material.roughness)).rg; vec3 specular = prefilteredColor * (F * brdf.x + brdf.y); vec3 ambient = (kD * diffuse + specular) * material.ao; return ambient; } }%
|